
Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 1

Welcome To …

x64 Deep Dive

Microsoft Developer Support
Global Escalation Summit, 2010

Presented by :

T.Roy
CodeMachine Inc.
www.codemachine.com

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 2

Speaker Introduction

 T.Roy

 Masters Degree in Computer Engineering

 20 years experience in system software development

 10 years international teaching experience

 Specialization in Windows Driver Development and
Debugging

 Founder of CodeMachine

 CodeMachine Inc.

 Consulting and Training Company

 Based in Palo Alto, CA, USA

 Custom Driver Development and Debugging Services

 Corporate on-site training in Windows Internals,
Networking, Device Drivers and Debugging

 http://www.codemachine.com

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 3

CodeMachine Courses

 Internals Track

 Windows User Mode Internals

 Windows Kernel Mode Internals

 Debugging Track

 Windows Basic Debugging

 Windows User Mode Debugging

 Windows Kernel Mode Debugging

 Development Track

 Windows Network Drivers

 Windows Kernel Software Drivers

 Windows Kernel Filter Drivers

 Windows Driver Model (WDM)

 Windows Driver Framework (KMDF)

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 4

Agenda

 x64 Architecture

 x64 Compiler

 x64 Call Stacks

 x64 Debugging

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 5

Register Changes

 Registers

 Contain data and addresses

 Determines the size of the data bus

 Determines width of data processed by CPU instructions

 Makes the x64 CPU a TRUE 64-bit CPU

 Non Volatile Registers

 RBX, RBP, RSI, RDI, R12-R15

 Register Based Parameter Passing

 RCX, RDX, R8, R9

 RBP not used as the frame pointer

 Segment Registers DS, ES, SS are not used

 CS used for attributes only

 GS register used to access TEB and PCR

 Debugger .trap command shows partial context

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 6

Virtual address space

 X64 virtual address are 64 bits, but

 CPU uses only the lower 48 bits

 Which limits the address range to 256 TB

 Windows uses only 44 bits (mostly)

 Restricts the user mode VAS to 8TB

 Restricts the kernel mode VAS to 8TB

 But there is stuff kept outside this 8TB
range in kernel virtual address space

 Like Hyperspace , PTEs, WSLE etc.

 Cannot contain data that require 128 bit
atomic instruction to access

 E.g. CMPXCHG16B

 Required to manipulate push locks,
interlocked SLISTS, EX_FAST_REF pointers

UVAS
8TB

KVAS
8TB

KVAS used internally by Windows 248TB

Unused

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 7

Physical address space

 x64 Physical Address are 64
bit, but

 CPU decodes on 52 bits of the
physical address

 PTEs contain a 36 bit PFN

 Page size is 4K (12 bits)

 Maximum addressable physical
space is (48 bits) or 256TB

 Windows supports up to 2TB of
physical RAM

 Requires 41 bits of physical
address

264

16 Exa
Bytes

252

4 Peta
Bytes

241

2 Tera
Bytes

Total
Address
Space

CPU
Support

Windows
Support

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 8

Function Inlining

 X64 compiler is very aggressive about inlining
functions

 Avoids the overhead of function call and stack setup

 But increases the size of the executable file

 Controlled by /Ob compiler flag

 Can be disabled on a per function basis by
__declspec(noinline)

Function1 ()
{

…
Function2();
…
Function3();
…

}

Function1
…

…

…
ret

Function2 ()
{

…
}

Function3 ()
{

…
}

Function2’s
Body

Function3’s
Body

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 9

Tail Call Optimization

 X64 compiler can optimize the last call made from a
function by replacing it with a jmp

 Avoids overhead of setting up stack frame for callee

 Caller and callee share the same stack frame

 Callee returns directly to the caller’s caller

Function1 (P1, P2)
{

…
Function2(P1);
…
Function3(P2);
…
return Function4(P1, P2);

}

Function1
…
call Function2
…
call Function3
…
jmp Function4

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 10

No Frame Pointer

 X64 functions use the stack pointer (RSP) to access
stack based parameters and local variables

 No need for a separate frame pointer

 No FP and hence no FPO (Frame Pointer Optimization)

 RBP is now a general purpose register

 Except – when a function uses alloca()
Stack

Stack
Frames

RBP
Prolog

x64Function()

Epilog

push RBP
mov RBP, RSP

pop RBP

mov rax, [rbp+8]
.
.
mov ebx, [rbp-4]

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 11

Static Stack Pointer

 Stack references are
performed based on RSP

 Functions depend on the
stack pointer (RSP) being
static throughout the
function body

 Push and Pop instructions
alter the stack pointer

 x64 functions restrict
push and pop
instructions to the
function prolog and
epilog respectively

Prolog

x64Function()

Epilog

. . .
push rXX
sub rsp, X

add rsp, X
pop rXX
ret

mov rXX, [rsp + X]
.
.
.
mov [rsp + X], rXX

RSP does not change

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 12

Exception Information

 X64 PE files (PE32+)
contain Exception
Directory (.pdata)

 Exception Directory
contains
RUNTIME_FUNCTION
structure for every
non-leaf function

 RUNTIME_FUNCTION

 Function extents

 Points to stack unwind
information required
for exception handling

 Points to exception
handler

f1()
{

...

}

Module

f2()
{

...
}

f3()
{

...

}

PE File

Exception
Directory

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 13

Stack Unwind Information

 UNWIND_INFO describes function call stack usage

 Identifies locations on the stack where function saves
non-volatile registers, stores local variables

 Contains variable number of embedded
UNWIND_CODE structures

f1()
{

...

}

BeginAddress
EndAddress
UnwindData

RUNTIME_FUNCTION

UNWIND_INFO

UNWIND_CODE

UNWIND_CODE

. . .

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 14

Unwind Code

 Each UNWIND_CODE structure describes one stack
operation performed by the function’s prolog

 Order of UNWIND_CODEs is important

 In reverse order of operations performed by the prolog

SAVE_NONVOL, rsi @ 0x50

SAVE_NONVOL, rbp @ 0x48

SAVE_NONVOL, rbx @ 0x40

ALLOC_SMALL, size=0x20

PUSH_NONVOL, register=r13

PUSH_NONVOL, register=r12

PUSH_NONVOL, register=rdi

UNWIND_INFO mov rax,rsp
mov qword ptr [rax+8],rbx
mov qword ptr [rax+10h],rbp
mov qword ptr [rax+18h],rsi
mov qword ptr [rax+20h],r9
push rdi
push r12
push r13
sub rsp,20h
.
.
.

Function Prolog

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 15

Performance Optimization

 Post link phase profile guided optimization applied to
OS binaries (aka BBT)

 Increases spatial locality of frequently executed code

Function
. . .
jz block3

block2:
. . .

block3 :
. . .
ret

Module

Function
. . .
jnz block2

block3 :
. . .
ret

block2:
. . .

jmp block3

Module

BBT

Chained
RUNTIME_FUNCTION
structures

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 16

Parameter Passing

 First 4 parameters to functions are always passed in
registers

 P1=rcx, P2=rdx, P3=r8, P4=r9

 5th parameter onwards (if any) passed via the stack

x64Function
. . .
push p6
push p5
mov r9, p4 ; qword param
mov r8, p3 ; qword param
mov rdx, p2 ; qword param
mov rcx, p1 ; qword param
call Function1
. . .

x64Function
. . .
push p6
push p5
mov r9b, p4 ; byte param
mov r8w, p3 ; word param
mov edx, p2 ; dword param
mov rcx, p1 ; qword param
call Function1
. . .

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 17

Homing Space

 Stack space allocated for register based parameters

 Minimum size of homing space is 0x20 bytes or 4 slots

 Even if function takes less than 4 parameters

 Typically used to store NV registers

Stack Based Parameter (1)

Stack Based Parameter (2)

R8 Home contains RSI

R9 Home contains R9

RCX Home contains RBX

RDX Home contains RBP

. . .

Caller Return Address

. . .

. . .

x64Callee
mov rax,rsp
mov qword ptr [rax+8],rbx
mov qword ptr [rax+10h],rbp
mov qword ptr [rax+18h],rsi
mov qword ptr [rax+20h],r9
. . .

RSP

08

10

18

20

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 18

Parameter Homing

 Enabled by /homeparams compiler flag

 Disabled on free builds but enabled on checked builds

 Callee saves register-based-parameters on the stack

 Does not affect caller

Stack Based Parameter (p5)

R8 Homed

R9 Homed

RCX Homed

RDX Homed

. . .

Caller Return Address

. . .

. . .

x64Callee
mov rax,rsp
mov qword ptr [rax+20h],r9
mov qword ptr [rax+18h],r8
mov qword ptr [rax+10h],rdx
mov qword ptr [rax+8],rcx
. . .

x64Caller
push p5
mov r9, p4
mov r8, p3
mov rdx, p2
mov rcx, p1
call x64Callee

. . .

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 19

Stack Usage

 Save (move) registers to
stack

 Push NV registers on
stack

 Allocate stack space for

 Locals

 Register based
parameters

 Stack based parameters

 Maximum number of
parameters required by
any function call

NV-Reg saved in R8 Home

NV-Reg saved in R9 Home

NV-Reg saved in RCX Home

NV-Reg saved in RDX Home

Pushed Non-Volatile Regs

Caller Return Address

Local Variables

Pushed Non-Volatile Regs

R8 Home

R9 Home

RCX Home

RDX Home

Stack Parameter Area

RSP

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 20

Child-SP

 Position of stack pointer after the function prolog

 x64 functions do not modify RSP after function prolog

 Stack based parameters and local variables are
accessed relative to RSP

Local Variables

NonVolatile Registers

Register Home

Stack Parameters

. . .

Return Address (RA1)

Return Address (RA2)

Register Home

. . .

RSP2

RSP3

Child-SP RetAddr CallSite
00 RSP1 RA1 f1
01 RSP2 RA2 f2
02 RSP3 RA3 f3

f2

f3

. . .
f1

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 21

Walking x64 call stack

 Unlike x86, no RBP chain on x64

 Debugger computes size of function stack frame using
stack usage information in the UNWIND_CODEs

 Computes value of next Child-RSP using current RSP
and size of the current stack frame

Local Variables

NonVolatile Registers

Register Parameters

Stack Parameters

Return Address (RA2)

. . .

Current RSP

Next RSP

Stack Frame Size
from UNWIND_CODEs

8

. . .

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 22

Finding Register based Parameters

 Registers get modified constantly as code executes

 Need to find where

 The value in the register came from (parameter source)

 The value in the register is going to (parameter
destination)

Child-SP RetAddr CallSite
00 RSP1 RA1 f1
01 RSP2 RA2 f2
02 RSP3 RA3 f3

To find
parameters to
function f2()

For parameter
sources use
current and
next frame

For parameter
destinations
use current
and previous
frame

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 23

Identifying parameter sources

 Works for parameters that are

 Constant Values

 Pointers to global data structures

 Values from global data structures

 Pointers to buffers on the stack

 Values stored on the stack

 Disassemble the next frame to find the source of the
values being loaded into RCX, RDX, R8 and R9

x64Caller
. . .
push p5
mov r9, 0x12345678
lea r8, [module!g_Data]
mov rdx, qword ptr [rsp+c8]
lea rcx, [rsp+6c]
call x64Callee

Disassembly of
Previous Frame

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 24

NV Regs as parameter sources

 Disassemble the next frame to find if the source of the
values being loaded into RCX, RDX, R8 and R9 are
non-volatile registers

 Disassemble the current frame to check if those NV
registers are saved on the stack

 Retrieve those NV registers to find the parameters

x64Callee
mov qword ptr [rax+20h],rsi
mov qword ptr [rax+18h],rdi
mov qword ptr [rax+10h],rbp
mov qword ptr [rax+8],rbx
push r12
. . .

x64Caller
push p5
mov r9, rbp
mov r8, rbx
mov rdx, r12
mov rcx, rdi
call x64Callee

Disassembly of
Current Frame

Disassembly of
Next Frame

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 25

Identifying parameter destinations

 Disassemble the function in the current frame to
check if the values in RCX, RDX, R8 and R9 are being
saved on the stack

 Retrieve the values from the stack using the Child-ESP
value for the current frame

x64Callee
. . .
mov qword ptr [rsp+3c], r9
mov qword ptr [rsp+38], r8
mov qword ptr [rsp+34], rdx
mov qword ptr [rsp+30], rcx
. . .

Disassembly of
Current Frame

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 26

NV Regs as parameter destinations

 Disassemble the function in the current frame to

 Check if the values in RCX, RDX, R8 and R9 are being
saved into NV Registers

 Check if these values saved in NV Registers are being
kept intact till the function in previous frame is called

 Disassemble the previous frame to check if it saves
those NV Regs

 Retrieve these NV registers to find the parameters
x64Callee
mov qword ptr [rax+20h],rsi
mov qword ptr [rax+18h],rdi
mov qword ptr [rax+10h],rbp
mov qword ptr [rax+8],rbx
push r12
. . .

x64Caller
mov rbp, r9
mov rbx, r8
mov rsi, rdx
mov rdi, rcx
call x64Callee

Disassembly of
Current Frame

Disassembly of
Previous Frame

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 27

Portability Tips

 When displaying pointers use %p

 Used in DbgPrint(), vsprintf(), RtlCchPrintf() etc

 %x truncates off the upper 32 bits on x64

 PreFast checks for this

 Handles are not 16 bit numbers on either x86 or x64

 They are pointer sized

 So treat them as such

 Use a polymorphic type like SIZE_T to store lengths

 Don’t assume most significant 20 bits of VAs are not
used

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 28

Debugger commands

 When you need pointer size don’t hardcode 4 and 8

 Use pseudo register ‘@$ptrsize’

 When you need to display a pointer don’t use ‘dd’ or
‘dq’

 Use the polymorphic command ‘dp’

 Save some screen real estate during x64 debugging

 Get rid of the opcodes using ‘.asm no_code_bytes’

 Don’t display function parameters, they are invalid
anyways

 Use ‘kn’ instead of ‘kvn’ or ‘kPn’

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 29

Questions

 Ask them now …

 Email them later to msges2010@codemachine.com

 Coming Soon… at http://www.codemachine.com

 In-Depth Technical Articles

 Debugging & RE Tools

 Debugger Extensions

Global Developer Support

