
Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 1

Welcome To …

x64 Deep Dive

Microsoft Developer Support
Global Escalation Summit, 2010

Presented by :

T.Roy
CodeMachine Inc.
www.codemachine.com

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 2

Speaker Introduction

 T.Roy

 Masters Degree in Computer Engineering

 20 years experience in system software development

 10 years international teaching experience

 Specialization in Windows Driver Development and
Debugging

 Founder of CodeMachine

 CodeMachine Inc.

 Consulting and Training Company

 Based in Palo Alto, CA, USA

 Custom Driver Development and Debugging Services

 Corporate on-site training in Windows Internals,
Networking, Device Drivers and Debugging

 http://www.codemachine.com

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 3

CodeMachine Courses

 Internals Track

 Windows User Mode Internals

 Windows Kernel Mode Internals

 Debugging Track

 Windows Basic Debugging

 Windows User Mode Debugging

 Windows Kernel Mode Debugging

 Development Track

 Windows Network Drivers

 Windows Kernel Software Drivers

 Windows Kernel Filter Drivers

 Windows Driver Model (WDM)

 Windows Driver Framework (KMDF)

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 4

Agenda

 x64 Architecture

 x64 Compiler

 x64 Call Stacks

 x64 Debugging

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 5

Register Changes

 Registers

 Contain data and addresses

 Determines the size of the data bus

 Determines width of data processed by CPU instructions

 Makes the x64 CPU a TRUE 64-bit CPU

 Non Volatile Registers

 RBX, RBP, RSI, RDI, R12-R15

 Register Based Parameter Passing

 RCX, RDX, R8, R9

 RBP not used as the frame pointer

 Segment Registers DS, ES, SS are not used

 CS used for attributes only

 GS register used to access TEB and PCR

 Debugger .trap command shows partial context

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 6

Virtual address space

 X64 virtual address are 64 bits, but

 CPU uses only the lower 48 bits

 Which limits the address range to 256 TB

 Windows uses only 44 bits (mostly)

 Restricts the user mode VAS to 8TB

 Restricts the kernel mode VAS to 8TB

 But there is stuff kept outside this 8TB
range in kernel virtual address space

 Like Hyperspace , PTEs, WSLE etc.

 Cannot contain data that require 128 bit
atomic instruction to access

 E.g. CMPXCHG16B

 Required to manipulate push locks,
interlocked SLISTS, EX_FAST_REF pointers

UVAS
8TB

KVAS
8TB

KVAS used internally by Windows 248TB

Unused

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 7

Physical address space

 x64 Physical Address are 64
bit, but

 CPU decodes on 52 bits of the
physical address

 PTEs contain a 36 bit PFN

 Page size is 4K (12 bits)

 Maximum addressable physical
space is (48 bits) or 256TB

 Windows supports up to 2TB of
physical RAM

 Requires 41 bits of physical
address

264

16 Exa
Bytes

252

4 Peta
Bytes

241

2 Tera
Bytes

Total
Address
Space

CPU
Support

Windows
Support

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 8

Function Inlining

 X64 compiler is very aggressive about inlining
functions

 Avoids the overhead of function call and stack setup

 But increases the size of the executable file

 Controlled by /Ob compiler flag

 Can be disabled on a per function basis by
__declspec(noinline)

Function1 ()
{

…
Function2();
…
Function3();
…

}

Function1
…

…

…
ret

Function2 ()
{

…
}

Function3 ()
{

…
}

Function2’s
Body

Function3’s
Body

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 9

Tail Call Optimization

 X64 compiler can optimize the last call made from a
function by replacing it with a jmp

 Avoids overhead of setting up stack frame for callee

 Caller and callee share the same stack frame

 Callee returns directly to the caller’s caller

Function1 (P1, P2)
{

…
Function2(P1);
…
Function3(P2);
…
return Function4(P1, P2);

}

Function1
…
call Function2
…
call Function3
…
jmp Function4

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 10

No Frame Pointer

 X64 functions use the stack pointer (RSP) to access
stack based parameters and local variables

 No need for a separate frame pointer

 No FP and hence no FPO (Frame Pointer Optimization)

 RBP is now a general purpose register

 Except – when a function uses alloca()
Stack

Stack
Frames

RBP
Prolog

x64Function()

Epilog

push RBP
mov RBP, RSP

pop RBP

mov rax, [rbp+8]
.
.
mov ebx, [rbp-4]

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 11

Static Stack Pointer

 Stack references are
performed based on RSP

 Functions depend on the
stack pointer (RSP) being
static throughout the
function body

 Push and Pop instructions
alter the stack pointer

 x64 functions restrict
push and pop
instructions to the
function prolog and
epilog respectively

Prolog

x64Function()

Epilog

. . .
push rXX
sub rsp, X

add rsp, X
pop rXX
ret

mov rXX, [rsp + X]
.
.
.
mov [rsp + X], rXX

RSP does not change

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 12

Exception Information

 X64 PE files (PE32+)
contain Exception
Directory (.pdata)

 Exception Directory
contains
RUNTIME_FUNCTION
structure for every
non-leaf function

 RUNTIME_FUNCTION

 Function extents

 Points to stack unwind
information required
for exception handling

 Points to exception
handler

f1()
{

...

}

Module

f2()
{

...
}

f3()
{

...

}

PE File

Exception
Directory

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 13

Stack Unwind Information

 UNWIND_INFO describes function call stack usage

 Identifies locations on the stack where function saves
non-volatile registers, stores local variables

 Contains variable number of embedded
UNWIND_CODE structures

f1()
{

...

}

BeginAddress
EndAddress
UnwindData

RUNTIME_FUNCTION

UNWIND_INFO

UNWIND_CODE

UNWIND_CODE

. . .

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 14

Unwind Code

 Each UNWIND_CODE structure describes one stack
operation performed by the function’s prolog

 Order of UNWIND_CODEs is important

 In reverse order of operations performed by the prolog

SAVE_NONVOL, rsi @ 0x50

SAVE_NONVOL, rbp @ 0x48

SAVE_NONVOL, rbx @ 0x40

ALLOC_SMALL, size=0x20

PUSH_NONVOL, register=r13

PUSH_NONVOL, register=r12

PUSH_NONVOL, register=rdi

UNWIND_INFO mov rax,rsp
mov qword ptr [rax+8],rbx
mov qword ptr [rax+10h],rbp
mov qword ptr [rax+18h],rsi
mov qword ptr [rax+20h],r9
push rdi
push r12
push r13
sub rsp,20h
.
.
.

Function Prolog

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 15

Performance Optimization

 Post link phase profile guided optimization applied to
OS binaries (aka BBT)

 Increases spatial locality of frequently executed code

Function
. . .
jz block3

block2:
. . .

block3 :
. . .
ret

Module

Function
. . .
jnz block2

block3 :
. . .
ret

block2:
. . .

jmp block3

Module

BBT

Chained
RUNTIME_FUNCTION
structures

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 16

Parameter Passing

 First 4 parameters to functions are always passed in
registers

 P1=rcx, P2=rdx, P3=r8, P4=r9

 5th parameter onwards (if any) passed via the stack

x64Function
. . .
push p6
push p5
mov r9, p4 ; qword param
mov r8, p3 ; qword param
mov rdx, p2 ; qword param
mov rcx, p1 ; qword param
call Function1
. . .

x64Function
. . .
push p6
push p5
mov r9b, p4 ; byte param
mov r8w, p3 ; word param
mov edx, p2 ; dword param
mov rcx, p1 ; qword param
call Function1
. . .

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 17

Homing Space

 Stack space allocated for register based parameters

 Minimum size of homing space is 0x20 bytes or 4 slots

 Even if function takes less than 4 parameters

 Typically used to store NV registers

Stack Based Parameter (1)

Stack Based Parameter (2)

R8 Home contains RSI

R9 Home contains R9

RCX Home contains RBX

RDX Home contains RBP

. . .

Caller Return Address

. . .

. . .

x64Callee
mov rax,rsp
mov qword ptr [rax+8],rbx
mov qword ptr [rax+10h],rbp
mov qword ptr [rax+18h],rsi
mov qword ptr [rax+20h],r9
. . .

RSP

08

10

18

20

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 18

Parameter Homing

 Enabled by /homeparams compiler flag

 Disabled on free builds but enabled on checked builds

 Callee saves register-based-parameters on the stack

 Does not affect caller

Stack Based Parameter (p5)

R8 Homed

R9 Homed

RCX Homed

RDX Homed

. . .

Caller Return Address

. . .

. . .

x64Callee
mov rax,rsp
mov qword ptr [rax+20h],r9
mov qword ptr [rax+18h],r8
mov qword ptr [rax+10h],rdx
mov qword ptr [rax+8],rcx
. . .

x64Caller
push p5
mov r9, p4
mov r8, p3
mov rdx, p2
mov rcx, p1
call x64Callee

. . .

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 19

Stack Usage

 Save (move) registers to
stack

 Push NV registers on
stack

 Allocate stack space for

 Locals

 Register based
parameters

 Stack based parameters

 Maximum number of
parameters required by
any function call

NV-Reg saved in R8 Home

NV-Reg saved in R9 Home

NV-Reg saved in RCX Home

NV-Reg saved in RDX Home

Pushed Non-Volatile Regs

Caller Return Address

Local Variables

Pushed Non-Volatile Regs

R8 Home

R9 Home

RCX Home

RDX Home

Stack Parameter Area

RSP

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 20

Child-SP

 Position of stack pointer after the function prolog

 x64 functions do not modify RSP after function prolog

 Stack based parameters and local variables are
accessed relative to RSP

Local Variables

NonVolatile Registers

Register Home

Stack Parameters

. . .

Return Address (RA1)

Return Address (RA2)

Register Home

. . .

RSP2

RSP3

Child-SP RetAddr CallSite
00 RSP1 RA1 f1
01 RSP2 RA2 f2
02 RSP3 RA3 f3

f2

f3

. . .
f1

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 21

Walking x64 call stack

 Unlike x86, no RBP chain on x64

 Debugger computes size of function stack frame using
stack usage information in the UNWIND_CODEs

 Computes value of next Child-RSP using current RSP
and size of the current stack frame

Local Variables

NonVolatile Registers

Register Parameters

Stack Parameters

Return Address (RA2)

. . .

Current RSP

Next RSP

Stack Frame Size
from UNWIND_CODEs

8

. . .

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 22

Finding Register based Parameters

 Registers get modified constantly as code executes

 Need to find where

 The value in the register came from (parameter source)

 The value in the register is going to (parameter
destination)

Child-SP RetAddr CallSite
00 RSP1 RA1 f1
01 RSP2 RA2 f2
02 RSP3 RA3 f3

To find
parameters to
function f2()

For parameter
sources use
current and
next frame

For parameter
destinations
use current
and previous
frame

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 23

Identifying parameter sources

 Works for parameters that are

 Constant Values

 Pointers to global data structures

 Values from global data structures

 Pointers to buffers on the stack

 Values stored on the stack

 Disassemble the next frame to find the source of the
values being loaded into RCX, RDX, R8 and R9

x64Caller
. . .
push p5
mov r9, 0x12345678
lea r8, [module!g_Data]
mov rdx, qword ptr [rsp+c8]
lea rcx, [rsp+6c]
call x64Callee

Disassembly of
Previous Frame

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 24

NV Regs as parameter sources

 Disassemble the next frame to find if the source of the
values being loaded into RCX, RDX, R8 and R9 are
non-volatile registers

 Disassemble the current frame to check if those NV
registers are saved on the stack

 Retrieve those NV registers to find the parameters

x64Callee
mov qword ptr [rax+20h],rsi
mov qword ptr [rax+18h],rdi
mov qword ptr [rax+10h],rbp
mov qword ptr [rax+8],rbx
push r12
. . .

x64Caller
push p5
mov r9, rbp
mov r8, rbx
mov rdx, r12
mov rcx, rdi
call x64Callee

Disassembly of
Current Frame

Disassembly of
Next Frame

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 25

Identifying parameter destinations

 Disassemble the function in the current frame to
check if the values in RCX, RDX, R8 and R9 are being
saved on the stack

 Retrieve the values from the stack using the Child-ESP
value for the current frame

x64Callee
. . .
mov qword ptr [rsp+3c], r9
mov qword ptr [rsp+38], r8
mov qword ptr [rsp+34], rdx
mov qword ptr [rsp+30], rcx
. . .

Disassembly of
Current Frame

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 26

NV Regs as parameter destinations

 Disassemble the function in the current frame to

 Check if the values in RCX, RDX, R8 and R9 are being
saved into NV Registers

 Check if these values saved in NV Registers are being
kept intact till the function in previous frame is called

 Disassemble the previous frame to check if it saves
those NV Regs

 Retrieve these NV registers to find the parameters
x64Callee
mov qword ptr [rax+20h],rsi
mov qword ptr [rax+18h],rdi
mov qword ptr [rax+10h],rbp
mov qword ptr [rax+8],rbx
push r12
. . .

x64Caller
mov rbp, r9
mov rbx, r8
mov rsi, rdx
mov rdi, rcx
call x64Callee

Disassembly of
Current Frame

Disassembly of
Previous Frame

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 27

Portability Tips

 When displaying pointers use %p

 Used in DbgPrint(), vsprintf(), RtlCchPrintf() etc

 %x truncates off the upper 32 bits on x64

 PreFast checks for this

 Handles are not 16 bit numbers on either x86 or x64

 They are pointer sized

 So treat them as such

 Use a polymorphic type like SIZE_T to store lengths

 Don’t assume most significant 20 bits of VAs are not
used

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 28

Debugger commands

 When you need pointer size don’t hardcode 4 and 8

 Use pseudo register ‘@$ptrsize’

 When you need to display a pointer don’t use ‘dd’ or
‘dq’

 Use the polymorphic command ‘dp’

 Save some screen real estate during x64 debugging

 Get rid of the opcodes using ‘.asm no_code_bytes’

 Don’t display function parameters, they are invalid
anyways

 Use ‘kn’ instead of ‘kvn’ or ‘kPn’

Copyrighted Material © 2010 CodeMachine Seminars. All Rights Reserved. 29

Questions

 Ask them now …

 Email them later to msges2010@codemachine.com

 Coming Soon… at http://www.codemachine.com

 In-Depth Technical Articles

 Debugging & RE Tools

 Debugger Extensions

Global Developer Support

