
Welcome to …

Supporting Support

Microsoft Global Escalation Summit, 2009

Presented by :

T.Roy
CodeMachine Inc.
www.codemachine.com

Speaker Introduction

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 2

 T.Roy

 Masters Degree in Computer Engineering

 20 years experience in system software development

 10 years international teaching experience

 Specialization in Windows Driver Development and
Debugging

 Founder of CodeMachine

 CodeMachine Inc.

 Consulting and Training Company

 Based in Palo Alto, CA, USA

 Custom Driver Development and Debugging Services

 Corporate on-site training in Windows Internals,
Networking, Device Drivers and Debugging

 http://www.codemachine.com

CodeMachine Courses

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 3

 Internals Track

 Windows User Mode Internals

 Windows Kernel Mode Internals

 Debugging Track

 Windows Basic Debugging

 Windows User Mode Debugging

 Windows Kernel Mode Debugging

 Development Track

 Windows Network Drivers

 Windows Kernel Software Drivers

 Windows Kernel Filter Drivers

 Windows Driver Model (WDM)

 Windows Driver Framework (KMDF)

Why This Talk…

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 4

 The problem

 Developer and Technical support folks have to deal with
crashes and hangs day in & day out

 In many cases ONE crash dump is all they have to root cause
a problem

 Often critical pieces of information that are required to nail
down a problem is missing from that one crash dump

 This talk covers some simple programming techniques

 To improve diagnosability of your code

 To help support folks get more out of the crash dumps

 To enable them determine root cause of an issue from a
single crash dump

 So they don’t have to ask the customer to reproduce the
problem again to get them yet another crash dump

So what can the developers do to help the
support folks do their job better and faster ?

Key Takeaways…
 In-memory data logging

 Preventing overwrite of important information

 Making data easily locatable and identifiable

 Logging relevant data and presenting it properly

 Complementing the OS’s data tracking

 Understanding OS support for run time data capture

 Capturing performance related data

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 5

Techniques discussed here clearly apply to kernel
mode drivers but …

They can be easily adapted to user mode code as well

Agenda

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 6

 Memory Trace Buffers

 Freed Pool Memory

 Structure Tracking

 Information Presentation

 State Logging

 Lock Owners

 Run Time Stack Traces

 Timing Information

Memory Trace Buffers

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 7

 Crash Dumps offer a temporal snapshot of a system

 Provides no historical information

 Often historical events are critical to root causing issues

 Log run time information into memory trace buffers

 Non-Paged buffers available in kernel and complete dumps

 Use circular buffer with wrap around feature

 Retains most recent events by replacing old ones

 Good compromise between memory usage & history length

 Avoid locking when logging events in memory

 Costly due to IRQL changes

 Use Interlocked operations instead

 Trace buffer information can be retrieved using ‘dt –a’

 Enable/Disable logging code using registry keys

 Kernel internally uses this type of logging

 Example : In-Flight Recorder (IFR) Logs

 Example : PnP State History inside Device Node (DEVNODE)

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 8

 Function

#define MY_HISTORY_MAX 32

typedef struct _MY_HISTORY {
PVOID Information;

} MY_HISTORY, *PMY_HISTORY;

MY_HISTORY g_History[MY_HISTORY_MAX];
ULONG g_Index = 0;

 Data Structures

LoggingFunction(PVOID Information)
{

ULONG Index = InterlockedIncrement (&g_Index);
PMY_HISTORY History =

&g_History[Index % MY_HISTORY_MAX];
History->Information = Information;

}

. . .

g_Index

g_History

M
Y
_
H
I
S
T
O
R
Y
_
M
A
X

Case Study

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 9

 WDM Filter Driver for Modem Stack

 Sitting between the modem driver and serial driver

 Filtering Read, Write and Device I/O Control IRPs

 System bug-checked at random points whenever the
serial device being filtered was accessed

 Crash dumps pointed to the kernel’s timer related code

 Unfortunately timers were used all over the place in the driver

 Added Trace Buffer to log all IRPs filtered by driver

 Each IRP entry contained

 IRP Pointer

 Major Function Code

 Major Function specific information

 New crash dumps helped establish relationship
between a particular IOCTL IRP and subsequent crash

 Problem was traced to un-cancelled timer on thread’s stack

 Bug was in error handling code path

Freed Pool Memory
 Memory that is freed back to pool is owned by the

memory manager

 Pool Manager uses data area of freed pool block to track the
freed block in internal pending and free lists

 1st pointer sized value used for Pending Block List

 1st 2 pointer sized values used for Freed Block List

 Driver stored data is overwritten by these pointers

 Cannot retrieve this data when examining freed pool blocks

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 10

Free
List

Pool Header

Pool Block

Pool Header

Pool Block
Contains
data that
belongs to
a driver

First few bytes of
driver data
overwritten

by pool manager

Allocated
Pool Block

Freed
Pool Block

Preserving Data

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 11

typedef struct _MY_STRUCT {
LIST_ENTRY Reserved; // don’t use me
. . .

} MY_STRUCT , *PMY_STRUCT;

 Avoid maintaining critical data in first 2 pointer sized
locations within pool allocated structures

 ‘Critical’ refers to any data that may be important during
crash dump analysis

 To achieve this

 Declare the first field of such structures as ‘Reserved’

 Does not address the issue of a pool block being

 Freed back to pool

 Immediately reallocated

 Completely overwritten by the next owner

Caching freed structures
 Problems in drivers typically related to the most

recent data structures that were operated upon

 Structures are freed back to pool after processing is complete

 Attempt to retrieve state information from the freed data
structure generally futile

 Information overwritten as freed pool memory is reallocated

 Make a copy of the contents of the structure just
before they get freed

 May not need to copy complete structure contents

 i.e. If structure is too big then only cache fields relevant to
debugging

 Maintaining a cache of last 2 freed structures of each
structure type used in the driver is typically adequate

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 12

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 13

#define MY_CACHE_SIZE 2
MY_STRUCT g_MyStructCache[MY_CACHE_SIZE];

VOID FreeMyStruct (PMY_STRUCT pMyStruct)
{

// backup the previously freed structure
g_MyStructCache [1] = g_MyStructCache [0];

// cache the structure we are about to free
g_MyStructCache [0] = *pMyStruct;

// now that the contents are cached, free it
ExFreePool (pMyStruct);

}

 Does incur the cost of two copies at every free

 This cost can be mitigated with optimization

 Caching the structure contents in a global array

Case Study

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 14

 Transport Driver Interface (TDI) Filter Driver

 Intercepted TCP traffic on ports like HTTP, SMTP, POP3 etc

 Each open socket represented by a socket context structure

 Allocated from non-paged pool during a bind() operation

 Freed when socket was closed by the application

 Freed socket context structures were cached

 Contents of socket context structure just before being freed
were retained in memory

 Intermittent hangs in IE, Firefox, Outlook

 Analysis of crash dumps generated after hang, established
temporal relationship of hangs to socket close operations

 Investigation of cached socket context structures in
crash dumps revealed a synchronization issue

 New socket I/O was being queued just before close

 Request was never processed, blocking application indefinitely

Structure Tracking
 Divers are asynchronous in nature

 Process multiple requests at the same time

 Each request can be in a different processing stage

 Hard to track down request or memory leaks in a
production environment

 Without enabling special tools like Driver Verifier

 Maintain dynamically allocated structures in a list

 Maintain all instances of a structure of a particular type in a
separate linked list

 Add to list after allocation and remove from list before freeing

 Counter keeps track of the number of requests in progress

 When unloading driver verify the list is empty

 Else log an error, at least you will know there is a problem

 List can be walked in a debugger using ‘dt –l’
command

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 15

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 16

KSPIN_LOCK MyListLock;
LIST_ENTRY MyListHead;
ULONG MyListCount;

typedef struct _MY_STRUCT {
LIST_ENTRY Link;
. . .

} MY_STRUCT, *PMY_STRUCT;

kd> dt poi(MyListHead) _MY_STRUCT -l Link.Flink

AllocateMyStruct()
{

// allocate and initialize pMyStruct
KeAcquireSpinLock (&MyListLock, &Irql);
InsertTailList (&MyListHead, &pMyStruct->Link);
MyListCount++;
KeReleaseSpinLock (&MyListLock, Irql);

}

Debugger
Command

State Logging
 Is this structure currently queued ?

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 17

kd> dt mydriver!_MY_STRUCT 87a8a7b0 Links
+0x080 Links : _LIST_ENTRY [0x81d4d990 - 0x87ed7560]

 Hard to tell which queue (if any) a structure is sitting in
looking at the LIST_ENTRY contents

 Add a ‘State’ field that contains this information

 When inserting and removing the structure from a list update
this ‘State’

 Must be updated with the queue lock held

 Use an ‘enum’ instead of a ‘#define’

 Enables the debugger to show you meaningful state as
opposed to a meaningless numeric value

 When processing system defined structures (e.g. IRP)

 Associate a driver defined context with the system structure

 Driver stores state in context & links it to lists for debugging

Implementation
 Include a ‘State’ field in the structure to track which

queue it is currently in

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 18

 This time it is easy to tell which queue it is in

typedef enum _MY_STATE {
NotQueued = 0,
InDeviceQueue = 1,
InCompletionQueue = 2

} MY_STATE;

typedef struct _MY_STRUCT {
. . .
LIST_ENTRY Links;
MY_STATE State;
. . .

} MY_STRUCT, PMY_STRUCT;

kd> dt mydriver!_MY_STRUCT 87a8a7b0 Links State
+0x080 Links : _LIST_ENTRY [0x81d4d990 - 0x87ed7560]
+0x088 State : 2 (InCompletionQueue)

Case Study

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 19

 NDIS USB Driver

 NDIS sends NBL to driver in transmit path

 NBL goes through multiple stages in driver & then completed

 Priority Queuing

 Point to Point Protocol (PPP) State Machine

 Hayes Modem AT Command State Machine

 USB Device Stack

 DRIVER_POWER_STATE_FAILURE (9f) on Vista

 Cause of this failure is typically NBLs pending in driver

 Preventing NDIS from putting system in lower power state

 Challenge was to locate the NBL that was stuck

 Structure Tracking & State Logging to the rescue

 Driver associated context structure with NBL

 Context structure linked to a per adapter list

 Context maintained processing stage the NBL was currently in

Information Presentation
 Windows software trace Pre-Processor (WPP) offers a

low overhead mechanism for run time logging

 Developers are strongly encouraged to use this facility

 But then what would you rather see in a WPP trace ?

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 20

 Log state information that may be useful in debugging

 Instead of just meaningless text messages

 Log related structures together, to get to one from the other

 Log state of data at request entry and exits points in driver

 Debugging should be data centric not code centric

 Especially TRUE for a crash dump

 No execution and no execution control

 All you have is snapshot of data structures to examine

MyRead() called

MyRead(#253, Buffer=0xff801000 Offset=1200 Length=4096)

OR

Sequence Numbers
 Which one is easier to comprehend and track ?

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 21

 Associate a sequence number with structures

 Store sequence number in the structure itself

 Generated from a globally incrementing sequence counter

 Include this sequence number along with the structure
pointer in the traces

 Applications

 Can be used to match request ingress and egress

 IRPs arriving in a driver in at a DispatchRoutine

 IRPs exiting from a driver through IoCompleteRequest()

 Can be used to match frequent allocations with frees

 Can be used to track a structure as it flows through various
processing stages within a driver

Request @ 0xffff8569004001870

Request # 27 @ 0xffff8569004001870

OR

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 22

// global epoch counter
ULONG g_SequenceCounter = 0;

// structure to be tagged with epoch
typedef struct _MY_STRUCT {

. . .
ULONG Sequence;
. . .

} MY_STRUCT, *PMY_STRUCT;

PMY_STRUCT pMyStruct;

pMyStruct->Sequence =
InterlockedIncrement (&g_SequenceCounter);

Case Study

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 23

 Custom application talking to a USB Input Device

 Application sends read request (IRP) to custom USB driver

 Driver builds URB and associates it with the request (IRP)

 IRP sent down to USB Bus Driver

 IRP completion routine queues a work item to process IRP

 Worker routine performs post-processing and completes IRP

 Application hangs under heavy load conditions

 WPP tracing in the USB driver comes to the rescue

 Allocate and associate context with each request (IRP)

 Store request sequence number in this context

 Log sequence number, IRP + URB pointers etc. in WPP trace

 Log in dispatch routine, completion routine and work item

 Examined WPP traces from stress test run

 Application hang attributed to out-of-order completion of IRPs
from worker thread context

Lock Owner
 ERESOURCEs, Fast Mutexes & Mutexes store the

owning thread identifier

 SpinLocks don’t

 Hard to track down spin lock owner during a livelock

 LiveLock is when all CPUs are spinning on locks

 Store owning Thread ID along with lock

 When declaring a spin lock declare another variable to store
the current lock owner

 Call these APIs through a wrapper, instead of calling directly

 KeAcquireSpinLock()/KeAcquireInStackQueuedSpinLock()

 KeReleaseSpinLock()/KeReleaseInStackQueuedSpinLock()

 Wrapper should store the current thread ID as soon as the
KeAcquireXXX() returns.

 Use PsGetCurrentThreadId()

 Helps identify lock owners in a crash dump

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 24

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 25

KSPIN_LOCK MyLock;
HANDLE MyLockOwner;

AcquireLock()
{

KeAcquireSpinLock (&MyListLock, &Irql);
MyLockOwner = PsGetCurrentThreadId();

}

ReleaseLock()
{

MyLockOwner = NULL;
KeReleaseSpinLock (&MyListLock, Irql);

}

Run Time Stack Traces

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 26

 Breakpoints used to obtain stacks during live debug

 Situations under which breakpoints are not feasible

 Timing sensitive issues

 Breakpoint triggers too often

 Live Debug not possible

 Debugging production systems

 Capture run-time stack traces

 Kernel Mode API RtlCaptureStackBackTrace()

 Caller specifies number of frames to skip and capture

 Returns stack fingerprint

 Used to identify duplicate stacks and store only unique ones

 Does not work if stack contains FPO functions

 Stack displayed by ‘dps’ or ‘dt’ command in a dump

 Used internally by multiple gflags options

 Kernel Mode Stack Trace Database (kst) etc.

USHORT WINAPI
RtlCaptureStackBackTrace(

ULONG FramesToSkip,
ULONG FramesToCapture,
PVOID* BackTrace,
PULONG BackTraceHash);

P
ro

to
ty

p
e

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 27

#define RET_ADDR_COUNT 3

typedef VOID (*PRET_ADDR)(VOID);
typedef struct _MY_BACKTRACE_ENTRY {

ULONG Hash;
PRET_ADDR Address[RET_ADDR_COUNT];

} MY_BACKTRACE_ENTRY, *PMY_BACKTRACE_ENTRY;

#define MY_BACKTRACE_COUNT 1024

ULONG g_BackTraceIndex = 0;
MY_BACKTRACE_ENTRY g_BackTraceHistory[BACKTRACE_COUNT];

VOID CaptureStack (VOID)
{

ULONG Index = InterlockedIncrement (&g_BackTraceIndex);
PMY_BACKTRACE_ENTRY Entry =

&g_BackTraceHistory[Index % MY_BACKTRACE_COUNT];
RtlCaptureStackBackTrace (

1, 3, Entry->Address, &Entry->Hash);
}

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 28

Function2()

Function3()

Function4()

Function5()

RtlCaptureStackBackTrace(
1, // FramesToSkip
3, // FramesToCapture
Entry->Address,
Entry->Hash);

Function3()

Function4()

Hash

Function8()

Function7()

Function6()

Function7()

Function6()

Hash

. . .

Function1() Function9()

g_BackTraceHistory
M
Y
_
B
A
C
K
T
R
A
C
E
_
E
N
T
R
Y

Function2()

Function8()

kd> dt -a g_BackTraceHistory.
Debugger Command

Case Study

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 29

 File System Mini-Filter Driver

 Allocates stream context (one such instance per open file)

 Context was referenced and dereferenced all over the driver

 Reference count leak in stream context

 Preventing filter from getting unloaded

 Added call to RtlCaptureStackBackTrace() in both
reference and dereference functions

 Both stack trace & the current reference count were stored

 Separate stack trace buffer was allocated for every stream
context from NPP and associated with the context

 New crash dumps contained necessary stacks, but

 Number of entries we have used initially were not large
enough to capture the leak

 Doubled the number of entries to 64

 Caught the leak in error handling code path of a function

Timing Information
 Performance Issues

 Different in nature from crashes and hangs

 Difficult to track down from a crash dump

 Profiling tools KernRate yield much better results

 Logging timing information can help immensely

 How long did it take your driver to process a request

 How long is you driver holding waitable locks

 How long was a thread waiting inside a driver

 How long is it taking your driver to search a list

 Measuring time

 KeQueryPerformance[Counter|Frequency]()

 KeQueryInterruptTime()/KeQueryTimeIncrement()

 KeQueryTickCount()/KeQueryTimeIncrement()

 Log this information so that it is available in a dump

 Compute and store peak timing information

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 30

Conclusion

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 31

 Small little changes improve driver debugability

 Retain critical historical data in circular buffers

 Keep the cost of logging as low as possible

 Preserve information before it gets overwritten

 Carefully choose what information to log

 Alternatives to live debugging & breakpoints do exist

 Log timing information for performance issues

Questions ?

Please email your questions or comments to

msges2009@codemachine.com

