
Welcome to …

Supporting Support

Microsoft Global Escalation Summit, 2009

Presented by :

T.Roy
CodeMachine Inc.
www.codemachine.com

Speaker Introduction

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 2

 T.Roy

 Masters Degree in Computer Engineering

 20 years experience in system software development

 10 years international teaching experience

 Specialization in Windows Driver Development and
Debugging

 Founder of CodeMachine

 CodeMachine Inc.

 Consulting and Training Company

 Based in Palo Alto, CA, USA

 Custom Driver Development and Debugging Services

 Corporate on-site training in Windows Internals,
Networking, Device Drivers and Debugging

 http://www.codemachine.com

CodeMachine Courses

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 3

 Internals Track

 Windows User Mode Internals

 Windows Kernel Mode Internals

 Debugging Track

 Windows Basic Debugging

 Windows User Mode Debugging

 Windows Kernel Mode Debugging

 Development Track

 Windows Network Drivers

 Windows Kernel Software Drivers

 Windows Kernel Filter Drivers

 Windows Driver Model (WDM)

 Windows Driver Framework (KMDF)

Why This Talk…

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 4

 The problem

 Developer and Technical support folks have to deal with
crashes and hangs day in & day out

 In many cases ONE crash dump is all they have to root cause
a problem

 Often critical pieces of information that are required to nail
down a problem is missing from that one crash dump

 This talk covers some simple programming techniques

 To improve diagnosability of your code

 To help support folks get more out of the crash dumps

 To enable them determine root cause of an issue from a
single crash dump

 So they don’t have to ask the customer to reproduce the
problem again to get them yet another crash dump

So what can the developers do to help the
support folks do their job better and faster ?

Key Takeaways…
 In-memory data logging

 Preventing overwrite of important information

 Making data easily locatable and identifiable

 Logging relevant data and presenting it properly

 Complementing the OS’s data tracking

 Understanding OS support for run time data capture

 Capturing performance related data

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 5

Techniques discussed here clearly apply to kernel
mode drivers but …

They can be easily adapted to user mode code as well

Agenda

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 6

 Memory Trace Buffers

 Freed Pool Memory

 Structure Tracking

 Information Presentation

 State Logging

 Lock Owners

 Run Time Stack Traces

 Timing Information

Memory Trace Buffers

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 7

 Crash Dumps offer a temporal snapshot of a system

 Provides no historical information

 Often historical events are critical to root causing issues

 Log run time information into memory trace buffers

 Non-Paged buffers available in kernel and complete dumps

 Use circular buffer with wrap around feature

 Retains most recent events by replacing old ones

 Good compromise between memory usage & history length

 Avoid locking when logging events in memory

 Costly due to IRQL changes

 Use Interlocked operations instead

 Trace buffer information can be retrieved using ‘dt –a’

 Enable/Disable logging code using registry keys

 Kernel internally uses this type of logging

 Example : In-Flight Recorder (IFR) Logs

 Example : PnP State History inside Device Node (DEVNODE)

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 8

 Function

#define MY_HISTORY_MAX 32

typedef struct _MY_HISTORY {
PVOID Information;

} MY_HISTORY, *PMY_HISTORY;

MY_HISTORY g_History[MY_HISTORY_MAX];
ULONG g_Index = 0;

 Data Structures

LoggingFunction(PVOID Information)
{

ULONG Index = InterlockedIncrement (&g_Index);
PMY_HISTORY History =

&g_History[Index % MY_HISTORY_MAX];
History->Information = Information;

}

. . .

g_Index

g_History

M
Y
_
H
I
S
T
O
R
Y
_
M
A
X

Case Study

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 9

 WDM Filter Driver for Modem Stack

 Sitting between the modem driver and serial driver

 Filtering Read, Write and Device I/O Control IRPs

 System bug-checked at random points whenever the
serial device being filtered was accessed

 Crash dumps pointed to the kernel’s timer related code

 Unfortunately timers were used all over the place in the driver

 Added Trace Buffer to log all IRPs filtered by driver

 Each IRP entry contained

 IRP Pointer

 Major Function Code

 Major Function specific information

 New crash dumps helped establish relationship
between a particular IOCTL IRP and subsequent crash

 Problem was traced to un-cancelled timer on thread’s stack

 Bug was in error handling code path

Freed Pool Memory
 Memory that is freed back to pool is owned by the

memory manager

 Pool Manager uses data area of freed pool block to track the
freed block in internal pending and free lists

 1st pointer sized value used for Pending Block List

 1st 2 pointer sized values used for Freed Block List

 Driver stored data is overwritten by these pointers

 Cannot retrieve this data when examining freed pool blocks

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 10

Free
List

Pool Header

Pool Block

Pool Header

Pool Block
Contains
data that
belongs to
a driver

First few bytes of
driver data
overwritten

by pool manager

Allocated
Pool Block

Freed
Pool Block

Preserving Data

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 11

typedef struct _MY_STRUCT {
LIST_ENTRY Reserved; // don’t use me
. . .

} MY_STRUCT , *PMY_STRUCT;

 Avoid maintaining critical data in first 2 pointer sized
locations within pool allocated structures

 ‘Critical’ refers to any data that may be important during
crash dump analysis

 To achieve this

 Declare the first field of such structures as ‘Reserved’

 Does not address the issue of a pool block being

 Freed back to pool

 Immediately reallocated

 Completely overwritten by the next owner

Caching freed structures
 Problems in drivers typically related to the most

recent data structures that were operated upon

 Structures are freed back to pool after processing is complete

 Attempt to retrieve state information from the freed data
structure generally futile

 Information overwritten as freed pool memory is reallocated

 Make a copy of the contents of the structure just
before they get freed

 May not need to copy complete structure contents

 i.e. If structure is too big then only cache fields relevant to
debugging

 Maintaining a cache of last 2 freed structures of each
structure type used in the driver is typically adequate

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 12

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 13

#define MY_CACHE_SIZE 2
MY_STRUCT g_MyStructCache[MY_CACHE_SIZE];

VOID FreeMyStruct (PMY_STRUCT pMyStruct)
{

// backup the previously freed structure
g_MyStructCache [1] = g_MyStructCache [0];

// cache the structure we are about to free
g_MyStructCache [0] = *pMyStruct;

// now that the contents are cached, free it
ExFreePool (pMyStruct);

}

 Does incur the cost of two copies at every free

 This cost can be mitigated with optimization

 Caching the structure contents in a global array

Case Study

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 14

 Transport Driver Interface (TDI) Filter Driver

 Intercepted TCP traffic on ports like HTTP, SMTP, POP3 etc

 Each open socket represented by a socket context structure

 Allocated from non-paged pool during a bind() operation

 Freed when socket was closed by the application

 Freed socket context structures were cached

 Contents of socket context structure just before being freed
were retained in memory

 Intermittent hangs in IE, Firefox, Outlook

 Analysis of crash dumps generated after hang, established
temporal relationship of hangs to socket close operations

 Investigation of cached socket context structures in
crash dumps revealed a synchronization issue

 New socket I/O was being queued just before close

 Request was never processed, blocking application indefinitely

Structure Tracking
 Divers are asynchronous in nature

 Process multiple requests at the same time

 Each request can be in a different processing stage

 Hard to track down request or memory leaks in a
production environment

 Without enabling special tools like Driver Verifier

 Maintain dynamically allocated structures in a list

 Maintain all instances of a structure of a particular type in a
separate linked list

 Add to list after allocation and remove from list before freeing

 Counter keeps track of the number of requests in progress

 When unloading driver verify the list is empty

 Else log an error, at least you will know there is a problem

 List can be walked in a debugger using ‘dt –l’
command

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 15

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 16

KSPIN_LOCK MyListLock;
LIST_ENTRY MyListHead;
ULONG MyListCount;

typedef struct _MY_STRUCT {
LIST_ENTRY Link;
. . .

} MY_STRUCT, *PMY_STRUCT;

kd> dt poi(MyListHead) _MY_STRUCT -l Link.Flink

AllocateMyStruct()
{

// allocate and initialize pMyStruct
KeAcquireSpinLock (&MyListLock, &Irql);
InsertTailList (&MyListHead, &pMyStruct->Link);
MyListCount++;
KeReleaseSpinLock (&MyListLock, Irql);

}

Debugger
Command

State Logging
 Is this structure currently queued ?

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 17

kd> dt mydriver!_MY_STRUCT 87a8a7b0 Links
+0x080 Links : _LIST_ENTRY [0x81d4d990 - 0x87ed7560]

 Hard to tell which queue (if any) a structure is sitting in
looking at the LIST_ENTRY contents

 Add a ‘State’ field that contains this information

 When inserting and removing the structure from a list update
this ‘State’

 Must be updated with the queue lock held

 Use an ‘enum’ instead of a ‘#define’

 Enables the debugger to show you meaningful state as
opposed to a meaningless numeric value

 When processing system defined structures (e.g. IRP)

 Associate a driver defined context with the system structure

 Driver stores state in context & links it to lists for debugging

Implementation
 Include a ‘State’ field in the structure to track which

queue it is currently in

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 18

 This time it is easy to tell which queue it is in

typedef enum _MY_STATE {
NotQueued = 0,
InDeviceQueue = 1,
InCompletionQueue = 2

} MY_STATE;

typedef struct _MY_STRUCT {
. . .
LIST_ENTRY Links;
MY_STATE State;
. . .

} MY_STRUCT, PMY_STRUCT;

kd> dt mydriver!_MY_STRUCT 87a8a7b0 Links State
+0x080 Links : _LIST_ENTRY [0x81d4d990 - 0x87ed7560]
+0x088 State : 2 (InCompletionQueue)

Case Study

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 19

 NDIS USB Driver

 NDIS sends NBL to driver in transmit path

 NBL goes through multiple stages in driver & then completed

 Priority Queuing

 Point to Point Protocol (PPP) State Machine

 Hayes Modem AT Command State Machine

 USB Device Stack

 DRIVER_POWER_STATE_FAILURE (9f) on Vista

 Cause of this failure is typically NBLs pending in driver

 Preventing NDIS from putting system in lower power state

 Challenge was to locate the NBL that was stuck

 Structure Tracking & State Logging to the rescue

 Driver associated context structure with NBL

 Context structure linked to a per adapter list

 Context maintained processing stage the NBL was currently in

Information Presentation
 Windows software trace Pre-Processor (WPP) offers a

low overhead mechanism for run time logging

 Developers are strongly encouraged to use this facility

 But then what would you rather see in a WPP trace ?

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 20

 Log state information that may be useful in debugging

 Instead of just meaningless text messages

 Log related structures together, to get to one from the other

 Log state of data at request entry and exits points in driver

 Debugging should be data centric not code centric

 Especially TRUE for a crash dump

 No execution and no execution control

 All you have is snapshot of data structures to examine

MyRead() called

MyRead(#253, Buffer=0xff801000 Offset=1200 Length=4096)

OR

Sequence Numbers
 Which one is easier to comprehend and track ?

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 21

 Associate a sequence number with structures

 Store sequence number in the structure itself

 Generated from a globally incrementing sequence counter

 Include this sequence number along with the structure
pointer in the traces

 Applications

 Can be used to match request ingress and egress

 IRPs arriving in a driver in at a DispatchRoutine

 IRPs exiting from a driver through IoCompleteRequest()

 Can be used to match frequent allocations with frees

 Can be used to track a structure as it flows through various
processing stages within a driver

Request @ 0xffff8569004001870

Request # 27 @ 0xffff8569004001870

OR

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 22

// global epoch counter
ULONG g_SequenceCounter = 0;

// structure to be tagged with epoch
typedef struct _MY_STRUCT {

. . .
ULONG Sequence;
. . .

} MY_STRUCT, *PMY_STRUCT;

PMY_STRUCT pMyStruct;

pMyStruct->Sequence =
InterlockedIncrement (&g_SequenceCounter);

Case Study

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 23

 Custom application talking to a USB Input Device

 Application sends read request (IRP) to custom USB driver

 Driver builds URB and associates it with the request (IRP)

 IRP sent down to USB Bus Driver

 IRP completion routine queues a work item to process IRP

 Worker routine performs post-processing and completes IRP

 Application hangs under heavy load conditions

 WPP tracing in the USB driver comes to the rescue

 Allocate and associate context with each request (IRP)

 Store request sequence number in this context

 Log sequence number, IRP + URB pointers etc. in WPP trace

 Log in dispatch routine, completion routine and work item

 Examined WPP traces from stress test run

 Application hang attributed to out-of-order completion of IRPs
from worker thread context

Lock Owner
 ERESOURCEs, Fast Mutexes & Mutexes store the

owning thread identifier

 SpinLocks don’t

 Hard to track down spin lock owner during a livelock

 LiveLock is when all CPUs are spinning on locks

 Store owning Thread ID along with lock

 When declaring a spin lock declare another variable to store
the current lock owner

 Call these APIs through a wrapper, instead of calling directly

 KeAcquireSpinLock()/KeAcquireInStackQueuedSpinLock()

 KeReleaseSpinLock()/KeReleaseInStackQueuedSpinLock()

 Wrapper should store the current thread ID as soon as the
KeAcquireXXX() returns.

 Use PsGetCurrentThreadId()

 Helps identify lock owners in a crash dump

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 24

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 25

KSPIN_LOCK MyLock;
HANDLE MyLockOwner;

AcquireLock()
{

KeAcquireSpinLock (&MyListLock, &Irql);
MyLockOwner = PsGetCurrentThreadId();

}

ReleaseLock()
{

MyLockOwner = NULL;
KeReleaseSpinLock (&MyListLock, Irql);

}

Run Time Stack Traces

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 26

 Breakpoints used to obtain stacks during live debug

 Situations under which breakpoints are not feasible

 Timing sensitive issues

 Breakpoint triggers too often

 Live Debug not possible

 Debugging production systems

 Capture run-time stack traces

 Kernel Mode API RtlCaptureStackBackTrace()

 Caller specifies number of frames to skip and capture

 Returns stack fingerprint

 Used to identify duplicate stacks and store only unique ones

 Does not work if stack contains FPO functions

 Stack displayed by ‘dps’ or ‘dt’ command in a dump

 Used internally by multiple gflags options

 Kernel Mode Stack Trace Database (kst) etc.

USHORT WINAPI
RtlCaptureStackBackTrace(

ULONG FramesToSkip,
ULONG FramesToCapture,
PVOID* BackTrace,
PULONG BackTraceHash);

P
ro

to
ty

p
e

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 27

#define RET_ADDR_COUNT 3

typedef VOID (*PRET_ADDR)(VOID);
typedef struct _MY_BACKTRACE_ENTRY {

ULONG Hash;
PRET_ADDR Address[RET_ADDR_COUNT];

} MY_BACKTRACE_ENTRY, *PMY_BACKTRACE_ENTRY;

#define MY_BACKTRACE_COUNT 1024

ULONG g_BackTraceIndex = 0;
MY_BACKTRACE_ENTRY g_BackTraceHistory[BACKTRACE_COUNT];

VOID CaptureStack (VOID)
{

ULONG Index = InterlockedIncrement (&g_BackTraceIndex);
PMY_BACKTRACE_ENTRY Entry =

&g_BackTraceHistory[Index % MY_BACKTRACE_COUNT];
RtlCaptureStackBackTrace (

1, 3, Entry->Address, &Entry->Hash);
}

Implementation

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 28

Function2()

Function3()

Function4()

Function5()

RtlCaptureStackBackTrace(
1, // FramesToSkip
3, // FramesToCapture
Entry->Address,
Entry->Hash);

Function3()

Function4()

Hash

Function8()

Function7()

Function6()

Function7()

Function6()

Hash

. . .

Function1() Function9()

g_BackTraceHistory
M
Y
_
B
A
C
K
T
R
A
C
E
_
E
N
T
R
Y

Function2()

Function8()

kd> dt -a g_BackTraceHistory.
Debugger Command

Case Study

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 29

 File System Mini-Filter Driver

 Allocates stream context (one such instance per open file)

 Context was referenced and dereferenced all over the driver

 Reference count leak in stream context

 Preventing filter from getting unloaded

 Added call to RtlCaptureStackBackTrace() in both
reference and dereference functions

 Both stack trace & the current reference count were stored

 Separate stack trace buffer was allocated for every stream
context from NPP and associated with the context

 New crash dumps contained necessary stacks, but

 Number of entries we have used initially were not large
enough to capture the leak

 Doubled the number of entries to 64

 Caught the leak in error handling code path of a function

Timing Information
 Performance Issues

 Different in nature from crashes and hangs

 Difficult to track down from a crash dump

 Profiling tools KernRate yield much better results

 Logging timing information can help immensely

 How long did it take your driver to process a request

 How long is you driver holding waitable locks

 How long was a thread waiting inside a driver

 How long is it taking your driver to search a list

 Measuring time

 KeQueryPerformance[Counter|Frequency]()

 KeQueryInterruptTime()/KeQueryTimeIncrement()

 KeQueryTickCount()/KeQueryTimeIncrement()

 Log this information so that it is available in a dump

 Compute and store peak timing information

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 30

Conclusion

Copyright © 2008 CodeMachine Seminars All Rights Reserved. 31

 Small little changes improve driver debugability

 Retain critical historical data in circular buffers

 Keep the cost of logging as low as possible

 Preserve information before it gets overwritten

 Carefully choose what information to log

 Alternatives to live debugging & breakpoints do exist

 Log timing information for performance issues

Questions ?

Please email your questions or comments to

msges2009@codemachine.com

