Supporting Support

Microsoft Global Escalation Summit, 2009

Presented by :

T.Roy

CodeMachine Inc.
www.codemachine.com

= T.Roy

Masters Degree in Computer Engineering
20 years experience in system software development
10 years international teaching experience

Specialization in Windows Driver Development and
Debugging
Founder of CodeMachine

= CodeMachine Inc.

Consulting and Training Company
Based in Palo Alto, CA, USA
Custom Driver Development and Debugging Services

Corporate on-site training in Windows Internals,
Networking, Device Drivers and Debugging

http://www.codemachine.com

» [nternals Track
= Windows User Mode Internals
= Windows Kernel Mode Internals

= Debugging Track
= Windows Basic Debugging
= Windows User Mode Debugging
= Windows Kernel Mode Debugging

= Development Track
= Windows Network Drivers
= Windows Kernel Software Drivers
= Windows Kernel Filter Drivers
= Windows Driver Model (WDM)
= Windows Driver Framework (KMDF)

= The problem

= Developer and Technical support folks have to deal with
crashes and hangs day in & day out

= In many cases ONE crash dump is all they have to root cause
a problem

= Often critical pieces of information that are required to nail
down a problem is missing from that one crash dump

'So what can the developers do to help the
support folks do their job better and faster ?

= This talk covers some simple programming techniques
= To improve diagnosability of your code
= To help support folks get more out of the crash dumps

= To enable them determine root cause of an issue from a
single crash dump

= So they don’t have to ask the customer to reproduce the
problem again to get them yet another crash dump

= In-memory data logging

= Preventing overwrite of important information

= Making data easily locatable and identifiable

= Logging relevant data and presenting it properly

= Complementing the OS’s data tracking

= Understanding OS support for run time data capture
= Capturing performance related data

[Techniques discussed here clearly apply to kernel
mode drivers but ...

_They can be easily adapted to user mode code as well)

= Memory Trace Buffers

= Freed Pool Memory

= Structure Tracking

= Information Presentation
= State Logging

= Lock Owners

= Run Time Stack Traces

= Timing Information

= Crash Dumps offer a temporal snapshot of a system
= Provides no historical information
= Often historical events are critical to root causing issues

= Log run time information into memory trace buffers
= Non-Paged buffers available in kernel and complete dumps

= Use circular buffer with wrap around feature
= Retains most recent events by replacing old ones
= Good compromise between memory usage & history length

= Avoid locking when logging events in memory
= Costly due to IRQL changes
= Use Interlocked operations instead

= Trace buffer information can be retrieved using ‘dt -a’
= Enable/Disable logging code using registry keys

= Kernel internally uses this type of logging
= Example : In-Flight Recorder (IFR) Logs

= Data Structures

g_History
#define MY_HISTORY_MAX 32 T
X
typedef struct _MY_HISTORY { <
PVOID Information; >
} MY_HISTORY, *PMY_HISTORY; %
|_
)
MY_HISTORY ¢_History[MY_HISTORY_MAX]; T
'ULONG g_Index = 0; -
i _Index
= Function 9--hdex. I
rLoggingFunction(PVOID Information)
{
ULONG Index = InterlockedIncrement (&g_Index) ;
PMY_HISTORY History =
&g_History[Index % MY_HISTORY_MAX];
History->Information = Information;
}

v

= \WDM Filter Driver for Modem Stack

= Sitting between the modem driver and serial driver
= Filtering Read, Write and Device I/O Control IRPs

= System bug-checked at random points whenever the
serial device being filtered was accessed
= Crash dumps pointed to the kernel’s timer related code
= Unfortunately timers were used all over the place in the driver

= Added Trace Buffer to log all IRPs filtered by driver

= Each IRP entry contained
= IRP Pointer
= Major Function Code
= Major Function specific information
= New crash dumps helped establish relationship
between a particular IOCTL IRP and subsequent crash

= Problem was traced to un-cancelled timer on thread’s stack

. Bui was in error handlini code iath

= Memory that is freed back to pool is owned by the
memory manager

= Pool Manager uses data area of freed pool block to track the
freed block in internal pending and free lists
= 1st pointer sized value used for Pending Block List
= 1t 2 pointer sized values used for Freed Block List
= Driver stored data is overwritten by these pointers

= Cannot retrieve this data when examining freed pool blocks

Allocated Freed
Pool Block Pool Block
Pool Header Pool Header
Free
List = |
. /Pool Block Pool Block™>
ContalnsL/ \F
data tha irst few bytes of
belongs to driver data
a driver overwritten

by pool manager

= Avoid maintaining critical data in first 2 pointer sized
locations within pool allocated structures

= ‘Critical’ refers to any data that may be important during
crash dump analysis

= To achieve this
= Declare the first field of such structures as ‘Reserved’

typedef struct _MY_STRUCT {
LIST_ENTRY Reserved; // don’t use me

} MY_STRUCT , *PMY_STRUCT;

= Does not address the issue of a pool block being
= Freed back to pool
= Immediately reallocated
= Completely overwritten by the next owner

= Problems in drivers typically related to the most
recent data structures that were operated upon
» Structures are freed back to pool after processing is complete

= Attempt to retrieve state information from the freed data
structure generally futile

» Information overwritten as freed pool memory is reallocated

= Make a copy of the contents of the structure just
before they get freed

= May not need to copy complete structure contents

= j.e. If structure is too big then only cache fields relevant to
debugging

= Maintaining a cache of last 2 freed structures of each
structure type used in the driver is typically adequate

. Cachlng the structure contents in a global array

(#define MY_CACHE_SIZE 2

MY_STRUCT g_MyStructCache[MY_CACHE_SIZE];

VOID FreeMyStruct (PMY_STRUCT pMyStruct)

{
// backup the previously freed structure
g_MyStructCache [1] = g_MyStructCache [0];
// cache the structure we are about to free
g_MyStructCache [0] = *pMyStruct;
// now that the contents are cached, free it
ExFreePool (pMyStruct);

}

_

J

= Does incur the cost of two copies at every free
= This cost can be mitigated with optimization

= Transport Driver Interface (TDI) Filter Driver
= Intercepted TCP traffic on ports like HTTP, SMTP, POP3 etc
= Each open socket represented by a socket context structure
= Allocated from non-paged pool during a bind() operation
= Freed when socket was closed by the application
= Freed socket context structures were cached

= Contents of socket context structure just before being freed
were retained in memory

= Intermittent hangs in IE, Firefox, Outlook

= Analysis of crash dumps generated after hang, established
temporal relationship of hangs to socket close operations

= Tnvestigation of cached socket context structures in

crash dumps revealed a synchronization issue
= New socket I/O was being queued just before close
= Request was never processed, blocking application indefinitely

= Divers are asynchronous in nature
= Process multiple requests at the same time
= Each request can be in a different processing stage
= Hard to track down request or memory leaks in a
production environment
= Without enabling special tools like Driver Verifier

= Maintain dynamically allocated structures in a list

= Maintain all instances of a structure of a particular type in a
separate linked list

= Add to list after allocation and remove from list before freeing
= Counter keeps track of the number of requests in progress

= When unloading driver verify the list is empty
= Else log an error, at least you will know there is a problem

= List can be walked in a debugger using ‘dt I’
command

(KSPIN_LOCK MyListLock:
LIST_ENTRY MyL1stHead;
ULONG MyListCount;

typedef struct _MY_STRUCT {
LIST_ENTRY L1ink;

} MY_STRUCT, *PMY_STRUCT;

AllocateMyStruct()

{
// allocate and initialize pMyStruct
KeAcquireSpinLock (&MyListLock, &Irql);
InsertTailList (&yListHead, &pMyStruct->Link);
MyL1stCount++;
KeReleaseSpinLock (&MyListLock, Irql);

1

kd> dt poi(MyListHead) _MY_STRUCT -1 Link.Flink | Debugger
Command

= Is this structure currently queued ?

kd> dt mydriver!_MY_STRUCT 87a8a7b0 Links
+0x080 Links : _LIST_ENTRY [Ox81d4d990 - 0x87ed7560]

= Hard to tell which queue (if any) a structure is sitting in
looking at the LIST_ENTRY contents
= Add a 'State’ field that contains this information

= When inserting and removing the structure from a list update
this ‘State’

= Must be updated with the queue lock held
= Use an ‘enum’ instead of a ‘#define’

= Enables the debugger to show you meaningful state as
opposed to a meaningless numeric value

= When processing system defined structures (e.g. IRP)
= Associate a driver defined context with the system structure
= Driver stores state in context & links it to lists for debugging

» Include a ‘State’ field in the structure to track which

queue it is currently in

(typedef enum _MY_STATE {
NotQueued = O,
InDeviceQueue = 1,
InCompletionQueue = 2

} MY_STATE;

typedef struct _MY_STRUCT {

LIST_ENTRY Links;
MY_STATE State;

\} MY_STRUCT, PMY_STRUCT;

~

</

= This time it is easy to tell whic

N queue it is in

kd> dt mydriver!_MY_STRUCT 87a8a7b0 Links State

+0x080 Links
+0x088 State :

: _LIST_ENTRY [0x81d4d990 - 0x87ed7560]
2 (InCompletionQueue)

= NDIS USB Driver

= NDIS sends NBL to driver in transmit path

= NBL goes through multiple stages in driver & then completed
= Priority Queuing
= Point to Point Protocol (PPP) State Machine
= Hayes Modem AT Command State Machine
= USB Device Stack

= DRIVER_POWER_STATE_FAILURE (9f) on Vista

= Cause of this failure is typically NBLs pending in driver
= Preventing NDIS from putting system in lower power state

= Challenge was to locate the NBL that was stuck

= Structure Tracking & State Logging to the rescue
= Driver associated context structure with NBL
= Context structure linked to a per adapter list
= Context maintained processing stage the NBL was currently in

= Windows software trace Pre-Processor (WPP) offers a
low overhead mechanism for run time logging
= Developers are strongly encouraged to use this facility

= But then what would you rather see in a WPP trace ?
(Myread() called]

OR
(MyRead (#253, Buffer=0xff801000 0ffset=1200 Length=4096) |

= | og state information that may be useful in debugging
= Instead of just meaningless text messages
= |Log related structures together, to get to one from the other
= | og state of data at request entry and exits points in driver

= Debugging should be data centric not code centric
= Especially TRUE for a crash dump
= No execution and no execution control

= All iou have is snaishot of data structures to examine

= Which one is easier to comprehend and track ?

[Request @ Oxffff8569004001870]
OR
[Request # 27 @ Oxffff8569004001870 |

= Associate a sequence number with structures
= Store sequence number in the structure itself
= Generated from a globally incrementing sequence counter

= Include this sequence number along with the structure
pointer in the traces

= Applications
= Can be used to match request ingress and egress

= IRPs arriving in a driver in at a DispatchRoutine
= IRPs exiting from a driver through IoCompleteRequest()

= Can be used to match frequent allocations with frees

= Can be used to track a structure as it flows through various
processing stages within a driver

\

,// global epoch counter
ULONG ¢g_SequenceCounter = 0;

// structure to be tagged with epoch
typedef struct _MY_STRUCT {

ULONG Sequence;

L} MY_STRUCT, *PMY_STRUCT;

PMY_STRUCT pMyStruct;

pMyStruct->Sequence =
InterlockedIncrement (&g_SequenceCounter);

= Custom application talking to a USB Input Device
= Application sends read request (IRP) to custom USB driver
= Driver builds URB and associates it with the request (IRP)
= JRP sent down to USB Bus Driver
= JRP completion routine queues a work item to process IRP
= Worker routine performs post-processing and completes IRP

= Application hangs under heavy load conditions

= WPP tracing in the USB driver comes to the rescue
= Allocate and associate context with each request (IRP)
= Store request sequence number in this context
= Log sequence number, IRP + URB pointers etc. in WPP trace
= Log in dispatch routine, completion routine and work item

= Examined WPP traces from stress test run

= Application hang attributed to out-of-order completion of IRPs
from worker thread context

= ERESOURCES, Fast Mutexes & Mutexes store the
owning thread identifier
= SpinLocks don't

= Hard to track down spin lock owner during a livelock
= LiveLock is when all CPUs are spinning on locks

= Store owning Thread ID along with lock

= When declaring a spin lock declare another variable to store
the current lock owner

= Call these APIs through a wrapper, instead of calling directly
= KeAcquireSpinLock()/KeAcquireInStackQueuedSpinLock()
= KeReleaseSpinLock()/KeReleaseIlnStackQueuedSpinLock()

= Wrapper should store the current thread ID as soon as the
KeAcquireXXX() returns.

= Use PsGetCurrentThreadId()
= Helps identify lock owners in a crash dump

KSPIN_LOCK MyLock;
HANDLE MyLockOwner;

AcquireLock()

{
KeAcquireSpinLock (&MyListLock, &Irql);
MyLockOwner = PsGetCurrentThreadIid();

ReleaseLock()

{
MyLockOwner = NULL;

KeReleaseSpinLock (&yListLock, Irql);

= Breakpoints used to obtain stacks during live debug

= Sjtuations under which breakpoints are not feasible
= Timing sensitive issues (USHORT WINAPI
= Breakpoint triggers too often Rt'CaPtureStaCkBaCkkaace(
L i ULONG FramesToSkip,
Live Debug not possible ULONG FramesToCapture,
= Debugging production systems

PVOID* BackTrace,
= Capture run-time stack traces _PULONG BackTraceHash);
= Kernel Mode API RtlCaptureStackBackTrace()
= Caller specifies number of frames to skip and capture

= Returns stack fingerprint
= Used to identify duplicate stacks and store only unique ones

= Does not work if stack contains FPO functions
= Stack displayed by ‘dps’ or ‘dt’ command in a dump

= Used internally by multiple gflags options
= Kernel Mode Stack Trace Database (kst) etc.

\

Prototype

! #define RET_ADDR_COUNT 3 !

typedef VOID (*PRET_ADDR) (VOID);
typedef struct _MY_BACKTRACE_ENTRY {
ULONG Hash;
PRET_ADDR Address[RET_ADDR_COUNT];
} MY_BACKTRACE_ENTRY, *PMY_BACKTRACE_ENTRY;

#define MY_BACKTRACE_COUNT 1024

ULONG g_BackTraceIndex = 0;
\MY_BACKTRACE_ENTRY g_BackTraceHistory[BACKTRACE_COUNT];/

(VOID CaptureStack (vOID)

{
ULONG Index = InterlockedIncrement (&g_BackTraceIndex) ;

PMY_BACKTRACE_ENTRY Entry =

&g_BackTraceHistory[Index % MY_BACKTRACE_COUNT];
Rt1CaptureStackBackTrace (

1, 3, Entry->Address, &Entry->Hash);

¢ Y,

g_BackTraceHistory
4)
Hash Functioni()

Function9()

Function4()

Function2()
Function3()

Function2() Function3()

Y
AN

Hash Function4()

e e e e = e —

N

p—-— - -———

Function6() . Function5() %
Function7() ST

Function§()

Rt1CaptureStackBackTrace(
1, // FramesToSkip—
3, // FramesToCapture
Entry->Address,
Entry->Hash);

Y
N\

MY_BACKTRACE_ENTRY

kd> dt -a g_BackTraceHistory.
_ Y, Debugger Command

= File System Mini-Filter Driver
= Allocates stream context (one such instance per open file)
= Context was referenced and dereferenced all over the driver

= Reference count leak in stream context
= Preventing filter from getting unloaded

= Added call to RtlCaptureStackBackTrace() in both
reference and dereference functions
= Both stack trace & the current reference count were stored

= Separate stack trace buffer was allocated for every stream
context from NPP and associated with the context

= New crash dumps contained necessary stacks, but

= Number of entries we have used initially were not large
enough to capture the leak

= Doubled the number of entries to 64
= Caught the leak in error handling code path of a function

= Performance Issues
= Different in nature from crashes and hangs
= Difficult to track down from a crash dump
= Profiling tools KernRate yield much better results

= Logging timing information can help immensely
= How long did it take your driver to process a request
= How long is you driver holding waitable locks
= How long was a thread waiting inside a driver
= How long is it taking your driver to search a list

= Measuring time
= KeQueryPerformance[Counter|Frequency]()
= KeQuerylnterruptTime()/KeQueryTimelncrement()
= KeQueryTickCount()/KeQueryTimelncrement()

= Log this information so that it is available in a dump
= Compute and store peak timing information

= Small little changes improve driver debugability

= Retain critical historical data in circular buffers

= Keep the cost of logging as low as possible

= Preserve information before it gets overwritten

= Carefully choose what information to log

= Alternatives to live debugging & breakpoints do exist
= Log timing information for performance issues

Questions ?

Please email your questions or comments to
msges2009@codemachine.com

